26 research outputs found

    Design of Telerobotic Drilling Control System with Haptic Feedback

    Get PDF
    The paper deals with the design of control algorithms for virtual reality based telerobotic system with haptic feedback that allows for the remote control of the vertical drilling operation. The human operator controls the vertical penetration velocity using a haptic device while simultaneously receiving the haptic feedback from the locally implemented virtual environment. The virtual environment is rendered as a virtual spring with stiffness updated based on the estimate of the stiffness of the rock currently being cut. Based on the existing mathematical models of drill string/drive systems and rock cutting/penetration process, a robust servo controller is designed which guarantees the tracking of the reference vertical penetration velocity of the drill bit. A scheme for on-line estimation of the rock intrinsic specific energy is implemented. Simulations of the proposed control and parameter estimation algorithms have been conducted; consequently, the overall telerobotic drilling system with a human operator controlling the process using PHANTOM Omni haptic device is tested experimentally, where the drilling process is simulated in real time in virtual environment

    Stability of Bilateral Teleoperators with Projection-Based Force Reflection Algorithms

    Get PDF
    Abstract-A general stability result for force-reflecting teleoperator systems with projection-based force reflection algorithms is established. It is shown that the closed-loop system's gain can be assigned arbitrarily by an appropriate choice of certain weighting function of the projection-based force reflection algorithm. In particular, this allows to achieve stability of the force-reflecting teleoperator system in presence of timevarying irregular delays for arbitrarily large force-reflecting gain and arbitrarily low damping and stiffness of the master. The proposed approach solves, to some extent, the trade-off between stability, manoeuvrability, and high force reflection gain in force-reflecting teleoperator system with network-induced communication constraints

    A Generalization of the Scattering Transformation for Conic Systems

    No full text

    Projection-Based Force-Reflection Algorithms With Frequency Separation for Bilateral Teleoperation

    No full text

    Projection-Based Force Reflection Algorithms for Teleoperated Rehabilitation Therapy

    No full text
    Abstract-The problem of designing of a haptics-enabled teleoperated rehabilitation system in the presence of communication delays is addressed. In a teleoperated rehabilitation system, communication delays introduce phase shift which may result in the task inversion phenomenon. To overcome the task inversion, a new type of projection-based force reflection algorithm is proposed which is suitable for assistive/resistive therapy in the presence of irregular communication delays. Additionally, algorithms for augmented therapy are introduced which combine the projection-based force reflection with a delay-free local virtual therapist. A small-gain design is developed which guarantees stability of the proposed schemes for both assistive and resistive modes of the therapy. Simulations and experimental results are presented which confirm the improvement achieved by the proposed methods
    corecore